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Abstract. A method developed by Glasser in 1973 is used to evaluate exactly lattice sums 
in 2, 4, 6 and 8 dimensions. Amongst the many results given are the Madelung sums. A 
certain three-dimensional sum first evaluated by Glasser but inaccurately presented, is 
given correctly. 

1. Introduction 

Glasser (1973a, b) has recently revived much interest in the exact evaluation of lattice 
sums, It should be explained here what is meant by the ‘exact’ value of a lattice sum. 
Here we say a multiple sum has been evaluated if it can be expressed as the product of 
simple sums such as Dirichlet series. For example it has been established that 

where the sum on the left-hand side is over all integer values of I, and I, both positive 
and negative but excluding the case where both are zero. The right-hand side is the 
product of two well known Dirichlet series namely 

n = O  n = O  

The right-hand side of (1) is thus regarded as the exact result. 
Two methods were presented by Glasser (1973a, b) in his evaluation of lattice sums. 

One was an analytic approach, the other involved number-theoretic techniques. Both 
approaches were used by Glasser to obtain some two-dimensional sums. A three- 
dimensional sum was also determined partially by the analytic method leaving a certain 
two-dimensional sum, which was finally evaluated using the arithmetic method. Glasser 
also commented on how higher even dimensional sums could be evaluated using the 
analytic approach, and gave one four-dimensional example. Here we use and extend 
the analytic method only, to evaluate Glasser’s three-dimensional sum, and to obtain 
exact results for many sums in 2, 4, 6 and 8 dimensions. One of the most fascinating 
facts about these results is that all but one of them are implicit in the monumental work 
of Jacobi-the Fundamenta Nova Theoriae Ellipticarum Functionum published in 1829. 
In this book Jacobi established some truly astonishing identities between products 
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and powers of some infinite series. The basic series which are used here are defined 
following Whittaker and Watson (1958). These are : 

m a 

(1.4) 
- C O  n = O  

a 00 

e4 = i -2q+2q4-2q9+ . . .  = 1 (-i)"qn2 = 1 + 2  c (-1)"'qn2 (1.5) 

(1.6) 

- C O  n = O  

a 
e; = 2q1/4(i-3q2+5q6- ...I = 2 1 (-1)"(2n+i)q'n++)2. 

n = O  

We quote below a few of the important relations existing amongst these functions, thus 

(1.9) is one of Jacobi's identities. 

complete elliptic integral of the first kind, K(k), given by 
These identities were not given in terms of the 8 functions, but rather in terms of the 

The relations between K and 6 functions are : 

(1.10) 

(1.11) 

where k Z  + kI2 = 1. 

parameter. 
q is actually equal to exp(-nK'/K) where K' = K(k'), but here i t  is treated as a 

2. Procedure for evaluating lattice sums 

The method of evaluating lattice sums is first illustrated in obtaining the result of (1.1). 
The operation M is first defined as 
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Now Jacobi (1829, p 103, equation (4)) gives 
a. - n + l  m m  

therefore 
m m  

M[B: - 13 = - [ f - l  1 1 ( -1)"exp[-( l fn)( l+2m)t]dt  
n = O  m = O  

m 03 

= 4 (-1)"(2m+1)-s 1 ( n + l ) - s  = 4[(S)j(S). (2.4) 
m = O  n = O  

We give one more example of what is essentially the Madelung sum for a four-dimen- 
sional cubic lattice. Thus 

(- 1)li + 1 2 + 1 3  +I4 (11 2 + I :  + 1: + l : ) -s  c 
(11.12.13.14)+ (O,O,O,O) 

exp[ - (1: + 1; + 15 + l:)t] 1 = M [  c ( -  I)!] +1z + l a  +I4 

( l l 3 l 2 J 3 , 1 4 ) +  (O,O,O,O) 

Now Jacobi (p 104, equation (IO)) gives, 

therefore 
(n+1) OD (-l)m 

M[~:-II = 8 1 (-iy+1- 1 - - - - 8 q ( S ) q ( S  - 1) 
n = O  (n+1ym=0(1+m)S 

30 

(2.6) 

where 

Thus for s = 2 the sum given in (2.5) is equal to -$c2 In 2. 

table 1. The d-dimensional sums have been defined as follows 
In a similar fashion many other lattice sums have been evaluated and presented in 

S(m,n)  = c ( I :  + 1: + . . . + g ) - S  (2.8) 

T(m,n)  = c[l:+l;+ . . .  +1:+(lm+1-f)2+ . . .  + ( 1 i - ) ) 2 ] - s  

( - 1 ) l 1 + I 2 + .  + I m  

( 1  1.12 , . . . , I d )  f (0,o ,..., 0 )  

(2.9) 

(2.10) 

where m+ n = d and the summations are over all integer values of I, . . . ld both positive, 
negative and zero excepting the case of S(m, n) in which all the 1, equal to zero are ex- 
cluded?. It then follows that 

(2.11) 

~ ( m ,  n) = e(-  1)11+12+...+1m [ I :+ . . .  + l i + ( l m + 1 - i ) 2 +  . . *  +(1d-$)2]-s 

s(m, n)  = M [ e p n ,  - 11 

(2.12) 

(2.13) 
t Thus the four-dimensional Madelung sum given in (2.5) is S(4,O). 
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In table 1 we list all the sums that have been evaluated, together with their associated 
q series, reference to the Fundamenta Nova and the result in terms of Dirichlet series. 
The following Dirichlet series defined below have also been used in the table. These are 

m 

A(s) = C (2n+ I)-' = (1 -2-'))5(s) 

A(s)  = C ( -  1)"(4n+ 1)-' B(s)  = (-  l)"(4n+ 3)-'. (2.14) 

All the Dirichlet series used here are convergent for s > 0 except for c(s) and l ( s )  which 
converge for s > 1. 

The only 4 series not given by Jacobi is that for 19~8,. The series for 8z82 also requires 
some care to formulate. The series for 8284 was obtained by Zucker (to be published) 
via a long argument using Glasser's (1973b) result for the lattice sum 

n = O  

m m 

n = O  n = O  

(2.15) 

which was obtained employing number theoretic techniques. Subsequently the q 
series for 8284 was derived directly without recourse to number theory. With this 
series the result of Glasser (1973b) for a certain three-dimensional result namely 

m m m  

T = 4 (-1)m[n2+m2+(I-$)2]-s 
n = l  m = l  I = 1  

(2.16) 

was re-evaluated. It is easily shown that 

2~ = ~ [ ( e ,  - I)(o, - i)e21 = ~ [ e ~ e ~ e ~  -0203 - e2e, +e2]. (2.17) 

Using identity (9) we find M[8,8,8,] = 22'+1p(2s- 1) thus 

2T = 22"1/3(2~-1)- T(1,l)- U(1, 1)+ T(0,l) 

therefore 

T = 22'[[p(2~ - 1) - A2(s) + B2(s) - A(s)/?(s) + A(2s)l. (2.18) 

This differs from Glasser's (1973b) result in some details. Both the left-hand side and 
the right-hand side of (2.18) have been independently evaluated numerically for several 
values of s, and the result given above found to be correct. 

3. Discussion 

Glasser (1973b) has pointed out that (2.18) appears to be the first exact result for a 
three-dimensional lattice sum so far obtained. However, I am less optimistic than he 
over the possibility of obtaining other exact three-dimensional results. The problem of 
finding S ( 0 , 3 )  or S(0, d) can be put in another way. Let zd(n) be the number of ways of 
representing any positive integer as a sum of d squares. Then it is easily shown that 
zd(n) is the coefficient of q" in ed,. Thus Jacobi (1829) solved the problem for d = 2,4, 6 
and 8 when rAn) can be expressed in terms of divisors of n. For example, 

?&I) = CS3 for odd n, 

~s(n) = 8 Sg - 8 S i  for even n 
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where 6 denotes a divisor of n, 6, an even divisor and 6, an odd divisor of n. Hardy 
(1918) states that zd(n) may be evaluated ‘within the limits of human capacity for cal- 
culation for any even value of d’. Glaisher (1907) has worked out systematically all 
cases up to d = 18, though for d > 8 more recondite arithmetic functions than simple 
divisor sums have to be used to express T d ( n ) .  But for odd d the problem is much more 
difficult belonging ‘to one of the most unfamiliar and difficult chapter in theory of 
numbers’. Hardy (1918) does actually give ‘exact’ results for e; ,  0: and e:, but they 
involve multiple sums. The M operation on these will not produce simplifications as 
illustrated in 6 2. 

There are some suggestions, however, that can be made concerning three-dimensional 
sums. For instance the Madelung sums for d = 1,2 and 4 are 

S(1,O) = - 2q(2s), S ( 2 , O )  = - 4V(S)B(S), S(4,O) = - ~ V ( S  - l )~ ( s )  (3.2) 

and similarly the Lennard-Jones and Ingham (1925) sums are 

S(0, 1) = 21(2s), S(09-4 = 4i(s)P(s), S(0,4) = 8(1 -22-zs)[(~-  l)[(s). (3.3) 

It might thus be conjectured that S(3,O) = -6q(s-$)J(s)  and S(0,3) = 6[ ( s - ) )K(s )  
where J ( s )  and K(s)  are as yet unknown Dirichlet series. A numerical investigation of 
this conjecture is now being carried out. 
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